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S U M M A R Y  
A simple new series, using an expansion of the velocity profile in parabolic cylinder functions, has been developed to 
describe the nonlinear evolution of a steady, laminar, incompressible wake from a given arbitrary initial profile. The 
first term in this series is itself found to provide a very satisfactory prediction of the decay of the maximum velocity 
defect in the wake behind a fiat plate or aft of the recirculation zone behind a symmetric blunt body. A detailed analysis, 
including higher order terms, has been made of the flat plate wake with a Blasius profile at the trailing edge. The 
same method yields, as a special case, complete results for the development of linearized wakes with arbitrary initial 
profile under the influence of arbitrary pressure gradients. Finally. for purposes of comparison, a simple approximate 
solution is obtained using momentum integral methods, and found to predict satisfactorily the decay of the maximum 
velocity defect. 

l .  Introduction 

There has been increasing interest in recent years in studies of the development and dynamics 
of wakes behind bodies. In the far wake, i.e. at large distances downstream where the velocity 
defects in the wake are small, the flow is governed by linear equations and has been studied in 
considerable detail, beginning with the early investigations of Tollmien (see Schlichting [1]) 
and Goldstein [2]. In the near wake, however, the flow is dominated by separation and re- 
attachment or trailing edge singularities, and is not yet completely understood. In between 
these extremities is a large region of nonlinear wake flow, which is the subject of the present 
work. Available evidence indicates that the near wake, especially in the case of a flat plate with a 
sharp trailing edge (which will be our major concern in the following), exerts only a local in- 
fluence, and possibly only sets certain initial conditions which then determine the wake 
development independently. It is therefore of interest to be able to calculate the development of 
the wake from a given (arbitrary) initial profile. 

The first attempts to obtain a complete description of the wake behind a flat plate were also 
made in the classic work of Goldstein [2, 3] who constructed asymptotic expansions of the 
solution respectively at small and at large values of the downstream coordinate x (in the form of 
power series in x). However, he found that beyond the second term the asymptotic far wake 

" solution at large x developed divergences (see Stewartson [4] on this point). Although the two 
expansions valid for x ~ 0 and x ~oe still left a large gap in the middle, a suitable translation 
(in x) of the far wake solution enabled Goldstein to patch it with the near wake solution at some 
intermediate point. 

Various experimental observations indicate that the shape of the velocity distribution 
behind a symmetric body settles down to a Gaussian remarkably rapidly. One way to exploit 
this feature in a theoretical attack on the problem is to assume a Gaussian velocity profile with 
certain free parameters which are then evaluated by a momentum integral technique. Cal- 
culations using such a method (described in Appendix 2 and applied to a flat plate wake) do 
often give simple and reasonable results, as in the present case. However, the errors in an 
integral method cannot always be satisfactorily estimated, and furthermore cannot be reduced 
by any systematic procedure. We propose here (in section 3) a new method which is both simple 
and accurate, and can in principle be used in a wide variety of shear flow problems of the kind 
discussed by Charwat and Der [5]. In this method, the velocity distribution at each station is 
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expanded in a series of orthogonal functions, and equations of motion are formulated for the 
Fourier coefficients in such an expansion, i.e., for the spectrum of the velocity distribution. This 
leads to an infinite system of ordinary differential equations for the Fourier coefficients ; these 
equations are coupled and nonlinear in general. But the fact that one mode dominates most of 
the flow makes it possible to solve these equations relatively easily, and all the Fourier ampli- 
tudes can be calculated to great accuracy; indeed, we have reason to believe that our final 
results are more accurate than the numerical solution based on finite difference schemes 
[5, 6] ; for this reason, the present approach can be looked upon both as a simple approxinlate 
method (when very few terms are used in the series) and as an efficient numerical method 
capable of great accuracy when more terms are included in the series. 

Because we use an orthogonal expansion for the velocity profile, the present approach may 
appropriately be called a spectral evolution or nonlinear mode interaction theory. At large 
distances downstream the problem becomes linear, as already pointed out; the modes then 
decouple to some extent, and we easily obtain a simple description of the far wake (section 5). 
A general analysis of the linear far wake has already been given by Gold [11], but the present 
work provides an alternative approach which is instructive. 

2. Formulation of the Problem 

Figure 1 gives a schematic representation of the problem under consideration. The velocity 
profile at the given initial station x =0  in the flow field is prescribed say as being fro (Y), and it is 
desired to find the downstream evolution of the profile. In the present paper only symmetric 
profiles are considered but the extension to nonsymmetric profiles is natural to the method we 
employ. We assume that the development of any profile, which will henceforth be termed a 
wake for convenience (although jet and other shear flows could also be treated by the same 

U l I Ul 

x'--~j(SAY) 

Figure 1. Schematic diagram of the problem. 
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method), is governed by the boundary-layer equations. For laminar, incompressible flow in the 
absence of pressure gradient they can be written as 

(~yk)~ + (~yk)~ = 0 (continuity) (2.1a) 

uu~ + vuy = (v/y?)(~y~k)~. (momentum) (2. lb) 

where 2 and y are co-ordinates along and normal to the centre line of the wake, ~ and ~ are the 
velocities in the respective directions, v the kinematic viscosity and k is an index which is equal 
to 0 for two-dimensional flow and 1 for axially symmetric flow. The subscripts indicate partial 
derivatives. 

The initial conditions on the velocity profile, the boundary conditions on the centre line and 
the asymptotic condition at infinity in the normal direction are 

u=uo(Y) at ~ = 0  

and f i , = ~ = 0  at y = 0 )  
~ U1 as ~--+ oo ; for all 2. (2.2) 

On introducing the stream function t~ defined by 

~yk = ff~, ~k = _ ~  (2.3) 

the continuity equation (2.1a) is identically satisfied. The momentum equation (2.1b) now 
reduces to 

G G~ - G G~ + (k/~) G G = vY ~ ( G .  - (k/y) ~ .  + (k/; ~) G). 
(2.4) 

Equation (2.4) is now nondimensionalised by putting 

~ =  ula~+14,(~,x), a = Gu,  ~= Gv 

y = @(x)/x/2, 2 = (U~62o/v)x (2.5) 

where ~ is the nondimensionalised stream function, x and ~/are the nondimensional distances 
in the axial and normal directions of the wake, U, the free stream velocity and 6 is a length scale 
(still undefined). Subscript 0 indicates value at the initial station. With these transformations 
{2.4) reduces to 

~.0..- ~ x , r  {~,./~k) _ (k + 1)(a'/a) 0r (0./~). 
= 2(1 - k)/2 ((~2/a2) l/lk(ortrl, __ kl/.irlq/~ "t- k~/q/~2) , (2.6) 

where 6' --- da/dx. 

3. Method of Solution 

3.1 The Equations of Motion 

We now proceed to find the solution of (2.6) by assuming that the velocity defect profile at any 
station is given by a series of the form 

w(x, rl) - 1-u(x ,  rl) = ~" Fp(x)D2p(r])  (3.1) 
912 

p=O 
where D2p is the symmetric parabolic cylinder function of order 2p [7], defined by 

Dzp(r/) = e-n2/4(2p)! 2 - P  ~,  ( - -1)m(2t l )  2p-2m 
m=O m! (2p--2m)! (3.1a) 

The functions Dzp satisfy the orthogonality condition 

i~176 D2pD2mdrl =O for peru 
. ( I  

~//2' p = m. (3.1b) (2p)! 
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It may be seen from (3.1) that the presence of only the Do component signifies that the profile is 
Gaussian. 

Our choice of a series of parabolic cylinder functions to represent the velocity profile, 
instead of the oft tried solutions of the kind 

u =  1 -  Z x" G.(q), 
n 

springs from a close inspection of the already known qualitative behaviour of the wake. 
(a) All wake solutions should approach the free stream velocity exponentially as t/--, oc. 
(b) The shear stress at the centre line of the wake should be zero, for all x. This implies 

that in laminar flow the velocity gradient in q direction should be zero at t/= 0 for all x. 
(c) The solution must asymptotically tend to the well known similarity solution as 

x ~ 0% regardless of the shape of the initial profile (as will be discussed in detail in w 5). 
By the choice of (3.1) as the solution we are automatically satisfying these conditions on 

the complete solution. It is hoped that by such a choice the solution obtained for Fv(x ) and 
6(x) will be valid over the entire range ofx  from 0 to oe, which is a property not possessed by 
any previously known form of solution. 

From (2.3) and (3.1), we can show that 

2(k+ 1)/2 O, = qk( 1 -FvDzv(r/)) ; (3.2) 

here and in all subsequent equations it is convenient to adopt a summation convention by 
which a repeated index signifies summation over all integers from 0 to or. Introducing (3.2) 
in (2.6) and simplifying we get 

t / p - Fp O:p + F. F,. ((Bin.-  A~.) D 2,) 

-- �89 6'/6) D2p { rv_ 1 + Fp -}- 2 (p-}- 1)(2p + 1)ffp+ I -t- 2(k-}- I ) APmnFmFn} 

= - �89 {Fv -1 - (4p + 1)Fp + 2 (p + 1)(2p + 1)F v +1 + 4kCP F,} Dzp, F-1 = 0 (3.3) 

where A~,, BVm, and C, p are constants defined by 

S rl-kD'z,(tl) D2,n(tl)tlk dtl = APrnnD2p(rl) (3.4a)  
o 

Dz,(~/)D2,,(t/) = BP, Dzp(tl) (3.4b) 

t/-1 D~,, (~/) = C~ D2, (q). (3.4c) 

Dashes indicate differentiation with respect to appropriate variables. The constants A~,, B~, 
and C p can be evaluated once and for all as they are independent of the initial profile. The 
procedure to evaluate these constants has been outlined in Appendix 1. Indeed, the one term 
solution involves only the following constants: 

Ao~ for k = 0  
= - 0 . 1 8 2  for k = l  ; 

B ~  0.8165, C ~  ( k = 0  or 1) 

(3.3) is an equation involving D2p01) and Fp(X). The governing equation for Fp(x) for any 
specified value of p, is obtained by multiplying (3.3) by D2p (~/) and integrating in ~/between the 
limits 0 and oQ. Using the orthogonality relations (3.1a), we get the equation for Fp(x) as 

t p ~ p t - -  Z p  - V v + X m F , , -  Y 6 = (3.5) 

where X~, YP and Z p are functions of the F, and 6 given by 
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P __ P X ~ =  F,(Bm, Am, ) 

YP = (1/26) {k~_ 1 + F p - 2 ( p +  1)(2p+ 1)Fp+ 1 @-2(kAr 1)A~,FmF,} 

Z p = �89 {Fp-1 - (4p+ 1)Fp+ 2(p + 1)(2p + 1)Fp+ 1 +4kCP, Fn}. (3.6) 

The equations (3.5) form an infinite set of coupled nonlinear first order differential equations 
for the Fp with 5 as an additional essentially arbitrary quantity. Because the equations are 
linear in the derivatives, they can be solved without too much difficulty by a marching process 
for any given set of initial values for the Fp. 

3.2 Initial and Boundary Conditions; Auxiliary Equation 

It can be observed from (3.1) that the boundary conditions on t/have already been satisfied. We 
need only to satisfy the initial conditions on the Fp now. These can be obtained by expanding 
the initial profile uo(y) in a series of D2p (t/) and using the orthogonality relations; we get 

Uo (7) = 1 - Fv(O ) Dzp(t]) (3.7) 

F,,(O) = [1-u~ o DZv(rl)dq" (3.8) 

To evaluate (3.8) one should however know the value of 6o. To a certain extent, the choice of Jo 
(and indeed of 6, as we shall see shortly) is arbitrary and for any particular choice, the corre- 
sponding Fp(0) can be evaluated using (3.8). This feature appears to be inherent in making a 
Fourier expansion of the type (3.7) over an infinite domain, as one is free to choose an arbitrary 
scaling parameter or unit in the independent variable. However, if we truncate (3.7) at some 
finite value ofp as an approximation, 6o can in principle be taken as the value which in con- 
junction with the corresponding Fv(O ) gives the best approximation, say e.g. to hold the mean 
square error to a minimum. 

We shall adopt here the following simpler alternative. First we determine the value of 6o such 
that a very small number of terms Fp (0) represents the profile to a fair approximation, and 
subsequently include more terms in (3.7) (using the same value for 6o) if higher accuracy is called 
for. E.g. in many practical applications as in the case of the wake behind a flat plate the profile 
is very nearly Gaussian and 6o can be conveniently chosen as the value of y where the defect 
velocity is equal to e- ~ times the maximum defect at the centre of the wake. Having chosen 6o 
we can now calculate Fp (0) to represent the profile to any desired accuracy. 

A similar problem arises at each value of x, and in fact we need one more relation prescribing 
the variation of 6 with x in order to make the set of equations (3.5) complete. One possibility 
would be to take this from the momentum integral solution, but in this approach also (see 
Appendix 2) one needs an auxiliary equation in addition. We might therefore just as well use 
this auxiliary equation to complete the system (3.5). We have chosen this equation by requiring 
that the momentum equation be satisfied exactly along the centre-line by only the Do compo- 
nent of the velocity profile. This gives, from (3.5), 

fo - l r~) = (k+ 1) 61 (3.9) 
Fo ~ "  

Other choices are possible, and it may be expected that any reasonable variation of 6 with x 
should be satisfactory. However, some choices will be better than others ; e.g. we have found 
that the adoption of the 6 (x) distribution obtained from the linear solution leads to difficulties 
when the maximum velocity defect approaches unity. 
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4. Results in the Nonlinear Problem 

4.1 The one-term solution 

Before embarking on the computation of the wake development of an arbitrary profile, it is 
quite interesting and also instructive to study the development of a wake which has a Gaussian 
starting profile with large defect. It has been observed that most of the defect profiles, when 
allowed to develop undisturbed, settle down to an approximately exponential shape at a very 
short distance from the body producing the wake, even when the centre line defect itself may not 
be small in magnitude compared to the free stream velocity. However, the rate of decay of the 
centre line velocity defect is different from that exhibited by linear wakes, though the profiles 
are approximately the same. This can be observed by inspecting the calculations of Gold- 
stein [3]. A similar trend is borne out by the experiments of Srinivasan [9] in turbulent flow. 
Hence we can expect that the analysis of the Gaussian profile gives a good first order ap- 
proximation for the growth of wakes behind bodies after a very short distance from the trailing 
edge (or after a short distance downstream of the recirculation region in the case of blunt 
bodies). Furthermore such an analysis yields a simple solution for the development of the wake 
as we neglect higher order effects (i.e., all F,, n r 0). 

Retaining, then, only Fo in (3.5) and (3.6), we get the equation for Fo as 

Fo (Boo- A ~  (6'/6){(Fo/2 ) + (k + l)Ao~ F~} - F ; + V o  ' o 

= �89 (g~/6 2) (F0 - 4kC~ Fo) (4.1) 
With the use of the auxiliary equation (3.9) for g, equation (4.1) can be simplified to give a 
relation between Fo and g as 

Fo g(' +~ {1 +2(1 + k)A~ k = 2k (4.2) 

where 

c~ k = (�89 + k / 4 -  B~ . (4.3) 

"~k is determined from the conditions at large x (F0 small), when the left hand side of (4.3) can 
be evaluated from a consideration of the momentum integral. 

The variation of Fo with x can be obtained from (3.9) and (4.2) as 

f F~ (v~/U12~/l+k)= (Fo-1)dFo/[(k+l)F~+3/(k+l){l+2(l+k)A~ (4.4) 
Fo(O) 

It can be easily seen that the solutions (4.2) and (4.4) reduce to the linear similarity solutions 
as Fo--, 0, 

F0 gl+k= )~k (4.5a) 

Fo(x) = Fo(0) { 1 + (2v2/U 1 gig)} -(1 + k)/2 (4.5b) 

Fig. 2 shows the "one term" solution (4.4) for the two-dimensional case along with many 
other results. Note that we have taken Fo(0)= 1, and that the abscissa is v2/UO 2 where 0 is 
the momentum thickness of the Blasius boundary layer at the trailing edge. 

Fig. 3 shows a similar one-term solution, with Fo (0) = 1, for an axisymmetric wake. 
Among the results from other workers shown in Fig. 2, those of Goldstein have already been 

mentioned. His "patched" solution is not shown to avoid cluttering the diagram, but it agrees 
well with the more accurate calculations of Charwat and Der [5], who solved the boundary 
layer equations numerically by a finite difference scheme. The accuracy of their calculations has 
been further improved [6], an indication of this being that the momentum thickness of the 
wake varies by less than 1% in their numerical solution (it should be strictly constant, by 
momentum conservation). We have also included in the diagram the experimental results of 
Hollingdale [8], which refer to the laminar wake behind a flat plate. 
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Figure 2. Decay of maximum defect velocity in two-dimensional flow, as predicted by various theories. 
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Figure 3. Decay of maximum defect velocity in axisymmetric flow. 
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1 0 0  

It is surprising how well the simple solution (4.4) predicts the decay of the maximum velocity 
defect along x. However at very small values of x the agreement is not very good (see inset to 
Fig. 2), perhaps due to the strong assumption made on the initial velocity profile. Thus, an 
analysis of the Blasius profile at x =0,  as in (3.7), shows that nearly 30 % of the total momentum 
defect is contained in the higher components Ft, F2 .... which have been ignored in the simple 
solution. Furthermore we have used the exact Blasius value of 0 in comparing different solu- 
tions, although the assumption Fo (0)= 1 is not strictly consistent with it. We now proceed 
to make a more refined analysis taking account of these higher order terms. 

4.2. Higher Order Effects 

The Blasius profile has been taken as the initial profile for the study of higher order effects as 
detailed results are available for comparison only in this case (Goldstein, Charwat et al.). It is 
found from an analysis made using (3.8) that the appropriate initial values for Fp are : 
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Fo(0) = 0.9822 FI(0) = 0.1176 

F2 (0) = 0.0107 F3 (0) = 0.00007 (4.6) 

F4(0) = 0.00001 6o = 0.6. 

The higher components are negligibly small; we therefore truncate the series (3.1) at p=4,  
and solve the equations (3.5) for F0 to F4 with (4.6) as the initial conditions and (3.9) as the 
auxiliary equation. This constitutes a marching problem, and was easily solved on an Elliott 
803 computer using a standard Runge-Kut ta  routine. The corresponding solution is also shown 
in Fig. 2, where it is labelled the "five-term solution". It may be observed from the figure that the 
maximum defect in the initial profile reaches an asymptotic value of 0.9 only, as x tends to 0. 
This is due to the fact that by the choice of the Fp(0) as in (4.6) the centre line defect is not 
accurately given at the starting point. However, the effect of this is only local ; for x > 0.001 the 
predicted wake development shows excellent agreement with the curves given by Charwat 
and Der [5]. For  the sake of clarity only a few representative points from the computations of 
[5] are shown in Fig. 2, as the differences are too small to be noticeable on a graph. It is found 
that in our solutions the momentum thickness is constant to within 0.1~o compared to 1~o 
in [3] as can be judged by the following table. 

v2/U102 0 0.33 32.76 

1 - u/U1 0.9 0.6388 0.1014 

0 0.4390 0.4395 0.4392 

So as to study the effect of keeping the maximum initial defect also at the correct value of 
unity without altering the momentum defect the following compromise was made. We keep 
the Fo (0), F1 (0) and F2 (0) values as obtained by (3.6), but calculate the values of F3 (0) and F4 (0) 
such that both the centre line defect and momentum defect are correctly represented. We then 
find that the values of F3 (0) and F4 (0) have to be changed from those given in (4.6) to 

F 3 (0) = -0 .0014,  F4(0) = 0.00078. (4.7) 

With (4.7) as the initial profile the development of the wake downstream was calculated as 
before and the result is shown in Fig. 2 as the "five term modified" solution. It is obvious that 
this solution gives an excellent prediction of wake development all the way from x = 0 to x ~ oo. 

5. Linearised Wakes 

We have seen in w 3 and 4 how the development of an arbitrary profile with large defect can be 
analysed. It can be shown that if the defect is small, so that the equations can be linearised, the 
solution for the development of any arbitrary shape can be expressed in closed form. For the 
sake of brevity we describe here the two-dimensional case only. However the solution for the 
axisymmetric case can be worked out on identical lines. The differences are pointed out at the 
end of the present section. 

Without much difficulty one can even include the effect of arbitrary pressure gradients in 
analyzing linearized wakes; the relevant equation of motion, for a two-dimensional laminar 
wake with a small defect, is [10]: 

- = 0 (s .1)  

with boundary conditions 

w ~ = 0  at ~ = 0 ;  w ~ 0  as ~/-~oo 

w = 1 - Uo (t/) at x = 0.  

It may be noted that all velocities are now non-dimensionalized with respect to some reference 
velocity U~, and U (x) is the free stream velocity at x non-dimensionalised with respect to the 
same reference velocity. 
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We now expand w as a series in parabolic cylinder functions as in (3.1). Carrying out simpli- 
fications as in w 3 we obtain the equations governing the different Fp as 

(6g/62){Fp_1 - (4p+ 1)Fp+2(p+ 1)(2p + 1)Fp+ 1} - 

(Ub)' {Fp-1 + F p - 2 ( p +  1)(2p+ 1)Fp+ 1} /3 -  (UFp)' = 0 (5.3) 

Equation (5.3) forms an infinite set of linear coupled equations, the coupling however being 
restricted to the neighbouring equations only, unlike in the nonlinear problem where each 
equation contains all the Fp and their derivatives. By a proper choice of 6 for the linear problem 
it is possible to decouple the equations further. If we choose b such that 

b(US)' = 3 2 (5.4) 

we find that the terms containing Fp_, in (5.3) are eliminated and we are left with Fp and Fp+ 1 
only. The equations will now be 

(U6)'{(2p+ 1)Fv-  2(p+ 1)(2p+ 1)Fv+ 1}/6+ (UFp)' = 0 .  (5.5) 

It can be easily verified from (5.5) that the effect of any Fvis felt on only the lower components 
F., n<  p. That is, the presence of F~ at any x, for example, affects only the development of Fo 
and F 1 but has no influence on the development ofF> F4 etc. 

If the series (3.1) is truncated at p = m, the general solution for the set of equations (5.1) can 
be written as 

uF=(~) = Z Ap+. ~p+,_,/(-2) ,.(V6) 2p+~'+' 
n=0 1=0 

f .qL l=l~Io .~p+, . . .  (Ua)2mUFm+l(U~)),dxm-p+l ' 

2, = 2(n+ 1)(2n + 1) (5.6) 

(we are not using the summation convention in this equation). 
The A, are constants to be evaluated from initial conditions. As noted earlier, if Fv(0 ) = 0  

for p > m at the start it will remain so for all x, because the integral in (5.6) will be identically 
zero. For example if at x = 0 

F~=F~ . . . .  = 0  

we get 

UFo = Ao/Ua-  A d ( U &  + 3&/(ua)  ~ 

UF, = A1/(U6) 3 - 6A2/(U6) s 

UF2 = Az/(U6) s (5.7) 

Knowing the values of U, b, F0, F~ and Fz at the start Ao, A~ and A 2 c a n  be evaluated. 
It can be seen from (5.6) that any component F v decays like (U6)-2=+1. Consequently, all 

profiles, irrespective of their initial shape, asymptotically tend towards the similarity profile 
Do, which is the mode with the slowest decay rate of all. 

The rate of growth of 6 can now be found from (5.4) as 

(6/a0): (Vo/V) 1+ (2/vg) o V(x)d~ . (5.8) 

(5.8) is of course the same as the rate of wake spreading in the similarity solution for wakes [10]. 

5.1 Particular Cases 

(a) Similarity profile: If we assume that the profile is exactly Gaussian (F,=0,  for all n # 0) we 
get the wellknown similarity solution [10] 
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Fo/Fo(O) = (U/Uo) {1 + (2/U~) f~ U (x)dx} -~ . (5.9) 

(b) F 1 profile : In order to get a quantitative picture of the decay of a profile different from 
the similarity profile, a profile with F,(0)4 0 only for n=  1 is studied. For this case we get 
Fz = F3 = . . .  = 0 for all x. Fo, F~ and the velocity profile in zero pressure gradient are given by 

= F, (0 ) (ao /a -  ao /a 3) 
F, = F1 (0)a3/a + 

u(x, n) 1 - ao ,~o U, = ~ - F , ( 0 ) D o ( q ) -  ~F,(O)[Do(q)-D2(q)].  (5.10) 

Fig. 4 shows the evolution of the profile with x, It may be mentioned that Gold [11] has 
worked out the solutions for the development of an arbitrary profile (including the effect of 
compressibility) in the form of an integral. Even though Gold's solution is elegant in form, its 
numerical evaluation is rather involved. The present solution is much simpler, particularly 
when the number of components is not large as in the case of a perturbed similarity profile. 
Further any small change in the shape of a profile can be easily taken care of. 
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Figure 4. Evolution of a linear Fl-profile. 

In the case of axisymmetric flow, we fred that the decoupling cannot be effected to the same 
extent as in two-dimensional flow, due to the terms containing inverse powers ofq on the right 
hand side of (2.6). The equation for any F v contains all the F,(n >p) unlike the two-dimensional 
case where only Fp+ 1 occurs in the equation for Fp. As a result the general solution for any Fp 
cannot be written out in simple form. However ifFp = 0 for p > n the equations can be solved for 
all the Fp working backwards from the last equation as in the two-dimensional problem. If the 
number of terms is not large the solution will still be simple. 
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6. Concluding Remarks 

A nonlinear mode theory is proposed and found to give solutions to great accuracy*. A series 
in parabolic cylinder functions is found to be an effective choice for the study of evolution of 
arbitrary wake profiles. When the maximum defect is not too close to unity, the first term ap- 
proximation in the mode theory and the momentum integral solution both fetch results which 
are simple and satisfactory in many practical applications. The method, it appears, can be 
easily extended to other shear flows and also to turbulent flows if we assume a suitable eddy 
viscosity. These are being presently attempted. 
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Appendix 1 

Using the wellknown recurrence relations between parabolic cylinder functions [-7], it can be 
shown from (3.4a)that (when k = 0) 

A~, Zv ) Zp = (A~,-_nA,,(,_ i))/2 

where / ;v  is defined as 

/;Pmn =fmO DepO2n+i(f2Demdtl)dq/f~D2pdq �9 

(A.O 

(A.2) 

A few simple algebraic manipulations of (3.4) using the recurrence relations between parabolic 
cylinder functions yield the following relations between APmn and B~n 

/;~m +l). = /;~, + 2m (2m -- 1)/;~,n -i),-- 2 B~(n +l) -- (2n + 1) 2B~, (A.3) 

/;~, =/;~(+_1 ~)(2p+ 1)(2p + 2)+ (4p-4n + 2)/~(,_ 1) 

- 2 ( n -  1)(2n- 1)/;Pro(,_ 2)+/;~(~2 ]) (A.4) 

~ =  z, z, (2n)! 2n/;~(,_ 1) (A.5) {amp +2pAre(p-i)} (2p)! 

B~,.+P l),-- B~(.+ l} + 4(n-m)B~n + 2n(2n-1)B~(,- i)-Zm(Zm-1)B(m- (A.6) 

B(,,+ 1 ) , v  -- (2p+l)(Zp+Z)B~ +~ +4(p-m)B~,+B~; ~ -2m(2m-l)Bf=_,), (A.7) 

BP. = B.P~ (A.8) 

zo z o _  o 0 (A.9) A~. = A . ~ -  Bin. = B.,, 

We find by exact integration that 

/;~ = (~)~ (A. 10) 

Knowing the value o f / ~  the values of/;~, and B~, for any given value of m, n and p can be 
found by using equations (A.3) to (A.10) successively./;~, can then be found from (A.1). More 
details will be found in [14]. 
* We are informed by a referee that an apparently somewhat similar method had been suggested in an unpublished 
presentation by S.C.R. Dennis at an Agard meeting. 
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Appendix 2. Momentum Integral Solutions 

It is found that, by using the momentum integral approach it is possible to obtain a simple, 
fairly accurate, closed form solution for the development of large defect wakes which have an 
approximate exponential form, as in the case of the wake behind a flat plate or behind sym- 
metric bodies downstream of the recirculation region. It must, however, be realised that the 
solution is not amenable to improvement as in the exact method outlined in w 3. 

Hill [12] has used this approach (together with an auxiliary moment of momentum equation) 
for studying wake problems. However, the problem has been analysed only for small defects in 
which case this approach is unnecessary as we have the exact solution even for arbitrary 
initial profiles. Later Hill [13] has used the momentum integral technique in turbulent flow of 
a jet in the presence of an outside stream or a duct, assuming that the velocity and shear stress 
profiles are the same self-similar distributions that have been determined by experiments on a 
free jet. However, we are not aware of a momentum integral treatment for the nonlinear 
laminar wake problem, and so give below a brief description. 

The momentum integral equation for a wake in zero pressure gradient can be written as 

f ~ u(1 - = constant.  (B.1) u) yk dy 
0 

Substituting for u from (3.1) and retaining only Fo (assuming a Gaussian profile for all x) we get 

J-o ( 1 -  F~176176176 dtl = c~ (B.2) 
ak+l 

which on simplification yields 

F o ( 1 - ~ o F o ) = A j ( 3 ,  k = 0  (B.3a) 

Vo(1 -r io fo) = A~/(52 , k=  1 (B.3b) 

where 

f: % = Dgd~l Dodtl (B.4a) 
o 

rio = Dg I,/dr/ Do 1/dr/, (B.4b) 
0 

A 1 and A2 are constants evaluated at x = 0  using (B.3a, b). 
(13.3) provides one equation relating Fo and 3. The other equation between Fo and 6 is taken 

from the centre line condition (3.9). The set of equations (4.2) and (B.3) yield 

(v2/U~ A 2) = (1 - c~ o Fo)Z/2F2o +(3c% - 1)(1 - %Fo)/Fo 

+ (3~g-2ao)in {(1 -ctoFo)/Fo} + { ( ~ -  ~g)Fo/(1 - ~oFo)} + C~, k = 0  ; 

(v2/Ul&) = (1- oVo)/ZFo+ { ( P o -  1)/2} In {(1 -  oro)/Fo) + C2, k = 1 .  b) 

where C1, C2 are arbitrary constants of integration. 
Figure 2 shows a comparison of (B.5a) with the more exact solutions in two-dimensional 

flow. Figure 3 compares the solution (B.5b) with the one-term solution obtained in w 4 for 
axisymmetric wake flow; the agreement is seen to be very close. 
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